Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Immun Ageing ; 20(1): 9, 2023 Mar 06.
Article in English | MEDLINE | ID: covidwho-2276860

ABSTRACT

BACKGROUND: Older people achieve lower levels of antibody titers than younger populations after Covid-19 vaccination and show a marked waning humoral immunity over time, likely due to the senescence of the immune system. Nevertheless, age-related predictive factors of the waning humoral immune response to the vaccine have been scarcely explored. In a cohort of residents and healthcare workers from a nursing home that had received two doses of the BNT162b2 vaccine, we measured specific anti-S antibodies one (T1), four (T4), and eight (T8) months after receiving the second dose. Thymic-related functional markers, including thymic output, relative telomere length, and plasma thymosin-α1 levels, as well as immune cellular subsets, and biochemical and inflammatory biomarkers, were determined at T1, and tested for their associations with the magnitude of the vaccine response (T1) and the durability of such response both, at the short- (T1-T4) and the long-term (T1-T8). We aimed to identify age-related factors potentially associated with the magnitude and persistence of specific anti-S immunoglobulin G (IgG)-antibodies after COVID-19 vaccination in older people. RESULTS: Participants (100% men, n = 98), were subdivided into three groups: young (< 50 years-old), middle-age (50-65 years-old), and older (≥65 years-old). Older participants achieved lower antibody titers at T1 and experienced higher decreases in both the short- and long-term. In the entire cohort, while the magnitude of the initial response was mainly associated with the levels of homocysteine [ß (95% CI); - 0.155 (- 0.241 to - 0.068); p = 0.001], the durability of such response at both, the short-term and the long-term were predicted by the levels of thymosin-α1 [- 0.168 (- 0.305 to - 0.031); p = 0.017, and - 0.123 (- 0.212 to - 0.034); p = 0.008, respectively]. CONCLUSIONS: Higher plasma levels of thymosin-α1 were associated with a lower waning of anti-S IgG antibodies along the time. Our results suggest that plasma levels of thymosin-α1 could be used as a biomarker for predicting the durability of the responses after COVID-19 vaccination, possibly allowing to personalize the administration of vaccine boosters.

2.
Aging (Albany NY) ; 14(15): 5964-5965, 2022 08 13.
Article in English | MEDLINE | ID: covidwho-2025976
3.
Br J Pharmacol ; 179(9): 1808-1824, 2022 05.
Article in English | MEDLINE | ID: covidwho-1799274

ABSTRACT

Advancing age is accompanied by significant remodelling of the immune system, termed immune senescence, and increased systemic inflammation, termed inflammageing, both of which contribute towards an increased risk of developing chronic diseases in old age. Age-associated alterations in metabolic homeostasis have been linked with changes in a range of physiological functions, but their effects on immune senescence remains poorly understood. In this article, we review the recent literature to formulate hypotheses as to how an age-associated dysfunctional metabolism, driven by an accumulation of key host metabolites (saturated fatty acids, cholesterol, ceramides and lactate) and loss of other metabolites (glutamine, tryptophan and short-chain fatty acids), might play a role in driving immune senescence and inflammageing, ultimately leading to diseases of old age. We also highlight the potential use of metabolic immunotherapeutic strategies targeting these processes in counteracting immune senescence and restoring immune homeostasis in older adults. LINKED ARTICLES: This article is part of a themed issue on Inflammation, Repair and Ageing. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.9/issuetoc.


Subject(s)
Aging , Immune System , Aged , Cellular Senescence , Homeostasis , Humans , Inflammation
4.
Int J Mol Sci ; 23(6)2022 Mar 21.
Article in English | MEDLINE | ID: covidwho-1753507

ABSTRACT

CD8+ T lymphocytes are a heterogeneous class of cells that play a crucial role in the adaptive immune response against pathogens and cancer. During their lifetime, they acquire cytotoxic functions to ensure the clearance of infected or transformed cells and, in addition, they turn into memory lymphocytes, thus providing a long-term protection. During ageing, the thymic involution causes a reduction of circulating T cells and an enrichment of memory cells, partially explaining the lowering of the response towards novel antigens with implications in vaccine efficacy. Moreover, the persistent stimulation by several antigens throughout life favors the switching of CD8+ T cells towards a senescent phenotype contributing to a low-grade inflammation that is a major component of several ageing-related diseases. In genetically predisposed young people, an immunological stress caused by viral infections (e.g., HIV, CMV, SARS-CoV-2), autoimmune disorders or tumor microenvironment (TME) could mimic the ageing status with the consequent acceleration of T cell senescence. This, in turn, exacerbates the inflamed conditions with dramatic effects on the clinical progression of the disease. A better characterization of the phenotype as well as the functions of senescent CD8+ T cells can be pivotal to prevent age-related diseases, to improve vaccine strategies and, possibly, immunotherapies in autoimmune diseases and cancer.


Subject(s)
Autoimmune Diseases , COVID-19 , HIV Infections , Neoplasms , Virus Diseases , CD28 Antigens , CD8-Positive T-Lymphocytes , Cellular Senescence , HIV Infections/drug therapy , Humans , SARS-CoV-2 , Tumor Microenvironment
5.
Inflamm Res ; 71(1): 13-26, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1504767

ABSTRACT

BACKGROUND: The SARS-CoV-2 pandemic continues to spread sporadically in the Unites States and worldwide. The severity and mortality excessively affected the frail elderly with co-existing medical diseases. There is growing evidence that cross-talk between the gut microbiome, Vitamin D and RAS/ACE2 system is essential for a balanced functioning of the elderly immune system and in regulating inflammation. In this review, we hypothesize that the state of gut microbiome, prior to infection determines the outcome associated with COVID-19 sepsis and may also be a critical factor in success to vaccination. METHODS: Articles from PubMed/Medline searches were reviewed using a combination of terms "SARS-CoV-2, COVID-19, Inflammaging, Immune-senescence, Gut microbiome, Vitamin D, RAS/ACE2, Vaccination". CONCLUSION: Evidence indicates a complex association between gut microbiota, ACE-2 expression and Vitamin D in COVID-19 severity. Status of gut microbiome is highly predictive of the blood molecular signatures and inflammatory markers and host responses to infection. Vitamin D has immunomodulatory function in innate and adaptive immune responses to viral infection. Anti-inflammatory functions of Vit D include regulation of gut microbiome and maintaining microbial diversity. It promotes growth of gut-friendly commensal strains of Bifida and Fermicutus species. In addition, Vitamin D is a negative regulator for expression of renin and interacts with the RAS/ ACE/ACE-2 signaling axis. Collectively, this triad may be the critical, link in determination of outcomes in SARS-CoV-2 infection. The presented data are empirical and informative. Further research using advanced systems biology techniques and artificial intelligence-assisted integration could assist with correlation of the gut microbiome with sepsis and vaccine responses. Modulating these factors may impact in guiding the success of vaccines and clinical outcomes in COVID-19 infections.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19 Vaccines , COVID-19/blood , Gastrointestinal Microbiome , SARS-CoV-2 , Vitamin D/metabolism , Adaptive Immunity , Aged , Animals , Anti-Inflammatory Agents , Artificial Intelligence , COVID-19/metabolism , Disease Models, Animal , Humans , Immune System , Immunity, Innate , Immunomodulation , Inflammation , Machine Learning , Male , Mice , Probiotics , Proteomics
6.
J Gerontol A Biol Sci Med Sci ; 77(9): 1890-1897, 2022 09 01.
Article in English | MEDLINE | ID: covidwho-1450390

ABSTRACT

BACKGROUND: Aging affects immunity, potentially altering fever response to infection. We assess effects of biological variables on basal temperature, and during COVID-19 infection, proposing an updated temperature threshold for older adults ≥65 years. METHODS: Participants were from 4 cohorts: 1 089 unaffected adult TwinsUK volunteers; 520 adults with emergency admission to a London hospital with RT-PCR confirmed SARS-CoV-2 infection; 757 adults with emergency admission to a Birmingham hospital with RT-PCR confirmed SARS-CoV-2 infection and 3 972 adult community-based COVID Symptom Study participants self-reporting a positive RT-PCR test. Heritability was assessed using saturated and univariate ACE models; mixed-effect and multivariable linear regression examined associations between temperature, age, sex, and body mass index (BMI); multivariable logistic regression examined associations between fever (≥37.8°C) and age; receiver operating characteristic (ROC) analysis was used to identify temperature threshold for adults ≥ 65 years. RESULTS: Among unaffected volunteers, lower BMI (p = .001), and increasing age (p < .001) was associated with lower basal temperature. Basal temperature showed a heritability of 47% (95% confidence interval 18%-57%). In COVID-19+ participants, increasing age was associated with lower temperatures in Birmingham and community-based cohorts (p < .001). For each additional year of age, participants were 1% less likely to demonstrate a fever ≥37.8°C (OR 0.99; p < .001). Combining healthy and COVID-19+ participants, a temperature of 37.4°C in adults ≥65 years had similar sensitivity and specificity to 37.8°C in adults <65 years for discriminating infection. CONCLUSIONS: Aging affects temperature in health and acute infection, with significant heritability, indicating genetic factors contribute to temperature regulation. Our observations suggest a lower threshold (37.4°C/97.3°F) for identifying fever in older adults ≥65 years.


Subject(s)
COVID-19 , Aged , Body Mass Index , COVID-19/epidemiology , COVID-19/genetics , Cohort Studies , Humans , SARS-CoV-2/genetics , Temperature
7.
Front Immunol ; 11: 573662, 2020.
Article in English | MEDLINE | ID: covidwho-895303

ABSTRACT

Bearing a strong resemblance to the phenotypic and functional remodeling of the immune system that occurs during aging (termed immunesenescence), the immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of Coronavirus disease 2019 (COVID-19), is characterized by an expansion of inflammatory monocytes, functional exhaustion of lymphocytes, dysregulated myeloid responses and the presence of highly activated senescent T cells. Alongside advanced age, male gender and pre-existing co-morbidities [e.g., obesity and type 2 diabetes (T2D)] are emerging as significant risk factors for COVID-19. Interestingly, immunesenescence is more profound in males when compared to females, whilst accelerated aging of the immune system, termed premature immunesenescence, has been described in obese subjects and T2D patients. Thus, as three distinct demographic groups with an increased susceptibility to COVID-19 share a common immune profile, could immunesenescence be a generic contributory factor in the development of severe COVID-19? Here, by focussing on three key aspects of an immune response, namely pathogen recognition, elimination and resolution, we address this question by discussing how immunesenescence may weaken or exacerbate the immune response to SARS-CoV-2. We also highlight how aspects of immunesenescence could render potential COVID-19 treatments less effective in older adults and draw attention to certain therapeutic options, which by reversing or circumventing certain features of immunesenescence may prove to be beneficial for the treatment of groups at high risk of severe COVID-19.


Subject(s)
Cellular Senescence/immunology , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Aging/immunology , Betacoronavirus/immunology , COVID-19 , Diabetes Mellitus, Type 2/immunology , Female , Humans , Male , Monocytes/immunology , Neutrophils/immunology , Obesity/immunology , Pandemics , Risk Factors , SARS-CoV-2 , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL